vSMC: Parallel Sequential Monte Carlo in C++

نویسنده

  • Yan Zhou
چکیده

Sequential Monte Carlo is a family of algorithms for sampling from a sequence of distributions. Some of these algorithms, such as particle filters, are widely used in the physics and signal processing researches. More recent developments have established their application in more general inference problems such as Bayesian modeling. These algorithms have attracted considerable attentions in recent years as they admit natural and scalable parallelizations. However, these algorithms are perceived to be difficult to implement. In addition, parallel programming is often unfamiliar to many researchers though conceptually appealing, especially for sequential Monte Carlo related fields. A C++ template library is presented for the purpose of implementing general sequential Monte Carlo algorithms on parallel hardware. Two examples are presented: a simple particle filter and a classic Bayesian modeling problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational Sequential Monte Carlo

Many recent advances in large scale probabilistic inference rely on variational methods. The success of variational approaches depends on (i) formulating a flexible parametric family of distributions, and (ii) optimizing the parameters to find the member of this family that most closely approximates the exact posterior. In this paper we present a new approximating family of distributions, the v...

متن کامل

Evaluating Quasi-Monte Carlo (QMC) algorithms in blocks decomposition of de-trended

The length of equal minimal and maximal blocks has eected on logarithm-scale logarithm against sequential function on variance and bias of de-trended uctuation analysis, by using Quasi Monte Carlo(QMC) simulation and Cholesky decompositions, minimal block couple and maximal are founded which are minimum the summation of mean error square in Horest power.

متن کامل

Massively Parallel Sequential Monte Carlo for Bayesian Inference

This paper reconsiders sequential Monte Carlo approaches to Bayesian inference in the light of massively parallel desktop computing capabilities now well within the reach of individual academics. It first develops an algorithm that is well suited to parallel computing in general and for which convergence results have been established in the sequential Monte Carlo literature but that tends to re...

متن کامل

On the utility of graphics cards to perform massively parallel simulation with advanced Monte Carlo methods

We present a case-study on the utility of graphics cards to perform massively parallel simulation with advanced Monte Carlo methods. Graphics cards, containing multiple Graphics Processing Units (GPUs), are self-contained parallel computational devices that can be housed in conventional desktop and laptop computers. For certain classes of Monte Carlo algorithms they offer massively parallel sim...

متن کامل

A pseudo-marginal sequential Monte Carlo algorithm for random effects models in Bayesian sequential design

A particle filter approach will be presented that can be used for Bayesian sequential design for random effects models in the presence of model and parameter uncertainty. Our focus is on sequential design where determining the next ‘best’ design point is defined via a utility function which could, for example, focus on parameter estimation, model discrimination or a combination of these two obj...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1306.5583  شماره 

صفحات  -

تاریخ انتشار 2013